Deep neural networks may easily memorize noisy labels present in real-world data, which degrades their ability to generalize. It is therefore important to track and evaluate the robustness of models against noisy label memorization. We propose a metric, called susceptibility, to gauge such memorization for neural networks. Susceptibility is simple and easy to compute during training. Moreover, it does not require access to ground-truth labels and it only uses unlabeled data. We empirically show the effectiveness of our metric in tracking memorization on various architectures and datasets and provide theoretical insights into the design of the susceptibility metric. Finally, we show through extensive experiments on datasets with synthetic and real-world label noise that one can utilize susceptibility and the overall training accuracy to distinguish models that maintain a low memorization on the training set and generalize well to unseen clean data.
translated by 谷歌翻译
Cross-domain graph anomaly detection (CD-GAD) describes the problem of detecting anomalous nodes in an unlabelled target graph using auxiliary, related source graphs with labelled anomalous and normal nodes. Although it presents a promising approach to address the notoriously high false positive issue in anomaly detection, little work has been done in this line of research. There are numerous domain adaptation methods in the literature, but it is difficult to adapt them for GAD due to the unknown distributions of the anomalies and the complex node relations embedded in graph data. To this end, we introduce a novel domain adaptation approach, namely Anomaly-aware Contrastive alignmenT (ACT), for GAD. ACT is designed to jointly optimise: (i) unsupervised contrastive learning of normal representations of nodes in the target graph, and (ii) anomaly-aware one-class alignment that aligns these contrastive node representations and the representations of labelled normal nodes in the source graph, while enforcing significant deviation of the representations of the normal nodes from the labelled anomalous nodes in the source graph. In doing so, ACT effectively transfers anomaly-informed knowledge from the source graph to learn the complex node relations of the normal class for GAD on the target graph without any specification of the anomaly distributions. Extensive experiments on eight CD-GAD settings demonstrate that our approach ACT achieves substantially improved detection performance over 10 state-of-the-art GAD methods. Code is available at https://github.com/QZ-WANG/ACT.
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
我们考虑涉及一组代理的在线估计问题。每个代理都可以访问(个人)流程,该过程从实数分布中生成样本,并试图估算其平均值。我们研究了某些分布具有相同均值的情况,并且允许代理人积极查询其他代理商的信息。目的是设计一种算法,该算法使每个代理都能够通过与其他代理商进行沟通来改善其平均估计。平均值的均值和分布数量尚不清楚,这使得任务是非平凡的。我们介绍了一种新颖的协作策略,以解决这个在线个性化的平均估计问题。我们分析其时间复杂性,并引入在数值实验中享有良好性能的变体。我们还将我们的方法扩展到了具有相似手段的代理商群体寻求估算其群集的平均值的环境。
translated by 谷歌翻译
现有的多方对话数据集用于核心分辨率是新生的,许多挑战仍然没有解决。我们根据电视成绩单为此任务创建了一个大规模数据集,多语言多方CoreF(MMC)。由于使用多种语言的黄金质量字幕可用,我们建议重复注释以通过注释投影以其他语言(中文和Farsi)创建银色核心数据。在黄金(英语)数据上,现成的模型在MMC上的性能相对较差,这表明MMC比以前的数据集更广泛地覆盖多方核心。在银数据上,我们发现成功使用它进行数据增强和从头开始训练,这有效地模拟了零击的跨语性设置。
translated by 谷歌翻译
网络控制系统是反馈控制系统,具有通过通信网络连接的不同位置分布的系统组件。由于通信网络是通过Internet进行的,并且存在带宽和数据包大小的限制,因此会出现网络限制。其中一些约束是时间延迟和数据包损失。这些网络限制会降低性能,甚至破坏系统的稳定。为了克服这些通信约束的不利影响,已经开发了各种方法,其中一种代表性是网络预测控制。该方法提出了一个控制器,该控制器会积极补偿网络时间延迟和数据包损耗。本文旨在实施网络预测控制系统,以通过计算机网络控制机器人组。网络延迟由预测变量解释,而使用冗余控制数据包可以减少数据包丢失的潜力。尽管延迟且数据包损失很大,但结果将显示系统的稳定性。此外,将提出对先前网络预测控制系统的改进,并显示性能的提高。最后,将研究不同系统和环境参数对控制循环的影响。
translated by 谷歌翻译
图像的持久性拓扑特性是一个附加描述符,提供了传统神经网络可能无法发现的见解。该领域的现有研究主要侧重于有效地将数据的拓扑特性整合到学习过程中,以增强性能。但是,没有现有的研究来证明引入拓扑特性可以提高或损害性能的所有可能场景。本文对拓扑特性在各种培训方案中的图像分类有效性进行了详细分析,定义为:训练样本的数量,训练数据的复杂性和骨干网络的复杂性。我们确定从拓扑功能中受益最大的场景,例如,在小数据集中培训简单的网络。此外,我们讨论了数据集的拓扑一致性问题,该问题是使用拓扑特征进行分类的主要瓶颈之一。我们进一步证明了拓扑不一致如何损害某些情况的性能。
translated by 谷歌翻译
共享自主权提供了一种框架,其中人类和自动化系统(例如机器人)共同控制系统的行为,使得各种应用程序能够实现有效的解决方案,包括人机交互。然而,共享自主权的具有挑战性问题是安全性,因为人类投入可能是未知的且不可预测的,这影响了机器人的安全限制。如果人类投入是通过与机器人的物理接触施加的力,它也会改变机器人的行为以保持安全性。通过提出双层控制框架,我们在实时应用中解决了分享自主权的安全问题。在第一层中,我们使用人类输入测量的历史来推断人类想要的机器人,并根据该推断定义机器人的安全约束。在第二层中,我们制定了一种快速探索的屏障对树,每个障碍对由屏障功能和控制器组成。使用这些屏障对中的控制器,机器人能够在从人体输入的干预下保持其安全操作。这一提议的控制框架允许机器人帮助人类,同时防止它们遇到安全问题。我们展示了拟议的控制框架,用于模拟双连杆机器人机器人。
translated by 谷歌翻译
大规模视频操作的可用性了解数据集在解释包含人员的视觉场景的解释方面有助于进步。然而,学会识别人类的行为和他们在包括众多人的不受约束的现实环境中的社交互动,具有来自移动机器人平台捕获的感官数据流的潜在高度不平衡和长尾的分布式动作标签仍然是一个重大挑战,由于缺乏反射性大型数据集而不是。在本文中,我们介绍了JRDB-ACT,作为现有JRDB的延伸,由社交移动机械手捕获,并反映了大学校园环境中的人类日常生活行为的真正分布。 JRDB-ACT浓密地用原子动作注释,包括超过2.8M的动作标签,构成了大规模的时空动作检测数据集。每个人的边界盒用一个基于姿势的动作标签和多个基于〜(可选)的基于交互的动作标签标记。此外,JRDB-ACT提供社会团体注释,有助于根据其在现场的互动来推断他们的社会活动〜(每个社会群体的共同活动)进行分组个人的任务。 JRDB-ACT中的每个注释标签都标有注释器的置信水平,这有助于开发可靠的评估策略。为了演示如何有效地利用这种注释,我们开发了端到端的培训管道,以学习和推断这些任务,即个人行动和社会群体检测。数据和评估代码在https://jrdb.erc.monash.edu/上公开可用。
translated by 谷歌翻译
疾病预测是医学应用中的知名分类问题。 GCNS提供了一个强大的工具,用于分析患者相对于彼此的特征。这可以通过将问题建模作为图形节点分类任务来实现,其中每个节点是患者。由于这种医学数据集的性质,类别不平衡是疾病预测领域的普遍存在问题,其中类的分布是歪曲的。当数据中存在类别不平衡时,现有的基于图形的分类器倾向于偏向于主要类别并忽略小类中的样本。另一方面,所有患者中罕见阳性病例的正确诊断在医疗保健系统中至关重要。在传统方法中,通过将适当的权重分配给丢失函数中的类别来解决这种不平衡,这仍然依赖于对异常值敏感的权重的相对值,并且在某些情况下偏向于小类(ES)。在本文中,我们提出了一种重加权的对抗性图形卷积网络(RA-GCN),以防止基于图形的分类器强调任何特定类的样本。这是通过将基于图形的神经网络与每个类相关联来完成的,这负责加权类样本并改变分类器的每个样本的重要性。因此,分类器自身调节并确定类之间的边界,更加关注重要样本。分类器和加权网络的参数受到侵犯方法训练。我们在合成和三个公共医疗数据集上显示实验。与最近的方法相比,ra-gcn展示了与最近的方法在所有三个数据集上识别患者状态的方法相比。详细分析作为合成数据集的定量和定性实验提供。
translated by 谷歌翻译